Simulation-based methods for interpreting x-ray data from lipid bilayers.
نویسندگان
چکیده
The fully hydrated liquid crystalline phase of the dimyristoylphosphatidycholine lipid bilayer at 30 degrees C was simulated using molecular dynamics with the CHARMM potential for five surface areas per lipid (A) in the range 55-65 A(2) that brackets the previously determined experimental area 60.6 A(2). The results of these simulations are used to develop a new hybrid zero-baseline structural model, denoted H2, for the electron density profile, rho(z), for the purpose of interpreting x-ray diffraction data. H2 and also the older hybrid baseline model were tested by fitting to partial information from the simulation and various constraints, both of which correspond to those available experimentally. The A, rho(z), and F(q) obtained from the models agree with those calculated directly from simulation at each of the five areas, thereby validating this use of the models. The new H2 was then applied to experimental dimyristoylphosphatidycholine data; it yields A = 60.6 +/- 0.5 A(2), in agreement with the earlier estimate obtained using the hybrid baseline model. The electron density profiles also compare well, despite considerable differences in the functional forms of the two models. Overall, the simulated rho(z) at A = 60.7 A(2) agrees well with experiment, demonstrating the accuracy of the CHARMM lipid force field; small discrepancies indicate targets for improvements. Lastly, a simulation-based model-free approach for obtaining A is proposed. It is based on interpolating the area that minimizes the difference between the experimental F(q) and simulated F(q) evaluated for a range of surface areas. This approach is independent of structural models and could be used to determine structural properties of bilayers with different lipids, cholesterol, and peptides.
منابع مشابه
Penetration of HIV-1 Tat47–57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering
The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bila...
متن کاملPreparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering.
This chapter describes a method of sample preparation called "the rock and roll method," which is basically a solvent evaporation technique with controlled manual sample movement during evaporation of solvent from lipid/solvent mixtures that produces well-oriented thick stacks of about 2000 lipid bilayers. Many lipid types have been oriented using different solvent mixtures that balance solubil...
متن کاملStudies of short-wavelength collective molecular motions in lipid bilayers using high resolution inelastic X-ray scattering.
We summarize a series of experimental results made with the newly developed high resolution X-ray scattering (IXS) instrument on two pure lipid bilayers, including dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) in both gel and liquid crystal phases, and lipid bilayers containing cholesterol. By analyzing the IXS data based on the generalized three effective eigenm...
متن کاملWhat are the true values of the bending modulus of simple lipid bilayers?
Values of the bending modulus KC are reviewed, and possible causes for the considerable differences are discussed. One possible cause is the use of glucose and sucrose in the classical micromechanical manipulation and shape analysis methods. New data, using the more recent low angle X-ray method, are presented that do not support an effect of glucose or sucrose on KC. Another possible cause is ...
متن کاملAcquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods
Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 90 8 شماره
صفحات -
تاریخ انتشار 2006